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STRESS ANALYSIS FOR A NONLINEAR VISCOELASTIC
RUBBERLIKE MATERIAL

EDWARD c. TINGt and GEORGE LIANIst

School of Aeronautics, Astronautics and Engineering Sciences, Purdue University, Lafayette, Indiana

Abstract-A nonlinear creep and a cylinder problem are studied based on the approximate constitutive equation
introduced by Lianis. These constitutive equations have been shown to be suitable for the characterization of
rubberlike materials under finite deformation. Numerical solutions, evaluated by using the experimental data
for styrene butadiene rubber, are obtained by means of a finite-difference technique. The effects of nonlinearity
of material properties are discussed.

1. INTRODUCTION

THE growing importance of plastics and high polymers as engineering materials has led
to an increasing interest in the method of viscoelastic analysis. The linear analysis for
infinitesimal deformations has received considerable attention in the past decade. However,
recent investigation reveals that for many polymers, nonlinearity should be considered
even at very small strains [1-15]. The necessity ofcharacterizing and predicting the material
responses leads to the recent development of nonlinear viscoelastic analysis.

In order to study the behavior of viscoelastic materials under large deformations, a
number of investigators have used the principles of continuum mechanics to develop
general constitutive equations. Such formulations usually involve the use of hereditary
functionals ofthe deformation history. Coleman and Noll [16J have applied this approach
to derive an approximation which applies to simple viscoelastic materials with fading
memory under slow motions. It is known as the finite linear viscoelastic theory. The term
"linear" refers to integrals, that is, only single integrals are shown in their equations. By a
thermodynamic consideration, Lianis [17J showed that additional thermodynamic
restrictions should be imposed on the constitutive equation. He also showed that, for an
isotropic compressible material under isothermal conditions, there are nine independent
material kernels. The number of kernel functions reduces to eight for incompressible
materials. Other than these kernels, three steady-state coefficients should be determined
to account for the equilibrium behavior.

Since three material coefficients and nine kernel functions are still beyond the realm
of experimental evaluation, some seemingly reasonable approximations have to be
introduced. In view of the Mooney-Rivlin approximation in rubber elasticity, Lianis [18J
suggested a possible simplification analogous to Mooney-Rivlin materials for isotropic
incompressible materials. His constitutive equation contains only four kernel functions
and three steady-state coefficients. Intuitively, Lianis' approximation can be regarded as
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an extension of the Mooney-Rivlin material where the linear deformation history has
been taken into account. A series of time varying tests were conducted by Lianis et al.
[19-25]. It reveals that Lianis' approximation is convenient for characterizing various
rubberlike viscoelastic materials over a wide range of deformation histories and time
periods. However, the usefulness of such theory for engineering design and stress analysis
should also depend on the feasibility of solving boundary value problems. It is therefore
the purpose of the present investigation to analyze some engineering problems based on
these approximate equations.

In Section 2, basic descriptions and a review of the approximate constitutive equations
are given. In Section 3, uniaxial creep under constant load is analyzed. Numerical solutions
are obtained by using the experimental results of uniaxial tensile relaxation tests on
styrene butadiene rubber conducted by Goldberg [26].

In Section 4, a cylinder problem is analyzed. We show that the problem can be reduced
to a single integral equation of Volterra type. Numerical solutions for a pressurized hollow
cylinder are obtained by using a finite-difference technique. It shows that Lianis' approxima­
tion is convenient for solving stress analysis problems.

2. BASIC EQUATIONS

Consider a rectangular Cartesian coordinate system fixed in space. Let X be the co­
ordinates of a material point of a body in its undeformed state with respect to the fixed
system; let x represent the coordinates at time r of the material point. Then,

x = x(X, r).

We shall use the following notations in matrix form

(2.1)

for the deformation gradient,

F(r) = [O;i)] ; F = F(t) (2.2)

(2.3)

for the relative deformation gradient, where t indicates the present time. The left and right
Cauchy-Green tensors are, respectively

(2.4)

(2.5)

If the material is assumed to be incompressible, the condition is

detIF(r)1 = 1 o~ r ~ t. (2.6)
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The stress-strain relations of an isotropic viscoelastic incompressible material have been
developed by Coleman and Noll [16]. Their formulation can be reduced to the form

O'(t) = - p(t)1 + (et> + I 1l/J)B -l/JB2 +f 00 [0et> 1(t- r)1 + 1et>1(t- r)B + 2et>1(t-r)B2]Clr) dr

+f 00 Ct(r)[°et>1(t- r)1 + 1et>1(t - r)B+ 2et>1(t- r)B2] dr

+1 foo tr{Ct(rWet>2(t-r)l+ 1et>2(t-r)B+ 2et>2(t-r)B2]} dr

+B foo tr{Ct(rWet>3(t-r)l+ 1et>3(t-r)B+ 2et>3(t-r)B2]} dr

+B2foo tr{Ct(rWet>4(t-r)l+ 1et>4(t-r)B+ 2et>4(t-r)B2]} dr (2.7)

where Ct(r) = (d/dr)Ct(r) at constant X, - p(t) is an arbitrary hydrostatic pressure, et> and
l/J are material functions of the first and second strain invariants 11 = tr B and 12 =
tuI -tr B2], iet>ir)(i = 0,1,2;j = 1,2,3,4) are twelve relaxation functions of time and
the strain invariants 11 and 12 . iet> j satisfies

lim iet>it) = o.t-oo (2.8)

Since p(t) is an arbitrary function of t, the integral with kernels iet>2 can be ignored without
losing generality. By considering an analogous theory to the Mooney-Rivlin material
in rubber elasticity, Lianis suggested the approximations

et> ~ a+b(I1 -3)

l/J ~ c

(2.9)

(2.10)

where a, b, C are material constants. The stress-strain relation is further simplified by
assuming

°et>3 = 2et>3 = °et>4 = 1et>4 = 2et>4 = o.
The rest of relaxation functions are retermed by

(2.11 )

et>o(t) = °et>1(t);

et>2(t) = 2et>1(t);

et>1(t) = 1et>1(t);

et>3(t) = 1et>3(t).
(2.12)

It is also assumed that these material functions et>o, et>1' et>2 and et>3 are independent of the
strain invariants. The resulting form is then

O'(t) = - p(t)1 + [a +b(I1- 3)+cI1]B- cB2+ 2f 00 et>o(t- r)Ct(r) dr + Bf 00 et>1(t- r)Ct(r) dr

+ foo et>1(t-r)Ct(r)drB+B2foo et>2(t-r)Ct(r)dr

+ foo et>2(t-r)Clr) drB2+B foo et>3(t-r)i 1(r) dr. (2.13)
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This simplified constitutive equation contains only four material kernel functions and
three material constants. It has been shown that this equation is convenient on character­
izing a large variety of rubber-like materials. For slow motions, the approximation (2.11)
appears to be quite satisfactory [19-25].

3. UNIAXIAL CREEP

Consider a prismatic bar under uniaxial loading along its axis. The material of the
bar is nonlinearly viscoelastic, incompressible and isotropic. Set the x I-axis along the
axis of the bar and X 2 and X3 in the transverse directions. The deformation of the bar
can be described by the relations;

x I (r) = A(r)X 1

(3.1)

where A(r) is the stretch ratio and, in general, time dependent.
From equations (2.4) and (2.5), we have

A2 0 0

B= 0 - 0
A

0 0
1
-
A

A.2(r)
0 0

A
0Ct(r) = 0

A(r)

0 0
A

A(r)

2 2
I1(r) = A (r)+ A(r)

where A = A(t).

(3.2)

(3.3)

(3.4)
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(3.5)

Using the stress-strain relation (2.13), stress components (11(t) and (1z(t) can be found.
Since the specimen is stress free on its curved surface, (1z(t) = 0, the hydrostatic pressure
p(t) can be deduced. The resulting expression for (11(t) is then:

[ (
2 2 ) c] (, 1) ft d[X~(7:);t ]til(t) = a+b A +--3 +- A~-- +2 cPo(t-r)- --- dT

A A ;t -if) dT X:! A(r)

+2 fro cPI(t-T>:r[;t2(T)- AtT>] dT+2 J~oo cP2(t-r):r[},ZIF(r)- AA~T)J dT

( l)f' d [ ., J+ ),2_l -00 cP3(t-r)dT ..:r2(r)+ A(T) dr.

If the cross-sectional area of the bar in the undeformed state is An, at time t, the cross·
sectional area becomes

AuA(t) = -,.
A

(3.6)

(3.7)

If the bar is undisturbed prior to time t and subjected to a constant load :It for t ~ 0+, then

n
til(t) =-A.

An

By substituting equation (3.7) into (3.5), we obtain an integral eqnation for determining
A(t).

(3.8)

In numerical calculation, the relaxation data for styrene butadiene rubber obtained by
Goldberg [26] are used. The measurements were obtained from a series of uniaxial tensile
relaxation tests at a constant temperature O°c. From the tensile stress relaxation isochrones,
the equilibrium coefficients were found to be;

a = 27 psi, b = 0, (3.9)

The relaxation functions cPo, cPl' <$>2 and cP3 were calculated by solving simultaneous
equations. The resulting data are listed in Table L Using the measured relaxation functions,
the nonlinear integral equation (3.8) is solved by a method of finite difference. For each
time step, the stretch ratio is determined by a trial-and-error method. Integrations are
evaluated numerically by trapezoidal formulas. For convenience, a dimensionless time
variable is introduced, t/to, where to is chosen to be 100 sec. The stretch of prismatic bar
is calculated for non-dimensional loading function n/(cPo(O)Ao] which varies from 1·0 to
12·0. The creep curves and load-stretch curves are ShO\\'tl in Figs. 1 and 2, respectively.
The load-stretch curves are concave to the stretch ratio axis and nonlinearity increases
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TABLE I. RELAXATION FUNCfIONS FOR STYRENE BUTADIENE RUBBER AT O°C (GOLDBERG [26])

Time 4>0 4>1 4>2 4>3
(sec) (psi) (psi) (psi) (psi)

0 12-30 9·00 -4·50 9·00
I 12-30 9·00 -4·50 9·00
2 9·70 8·35 -4·28 8·35
4 743 7·65 -3·83 7·65
6 6·35 7·26 -3·63 7·26

10 5·07 6·87 -3·44 6·87
15 4·12 6·51 -3·26 6·51
20 3·51 6·29 -3·15 6·29
30 2·68 5·93 -2·97 5·93
40 2·18 5·60 -2-80 5·60
50 1·84 5·32 -2·66 5·32
60 1·62 5·04 -2·52 5·04

120 0·96 3·92 -1·96 3·92
180 0·66 3·04 -1·52 3·04
360 0·25 1·64 -0·82 1·64
540 0·09 0·70 -0·35 0·70
720 0 0 0 0

sharply with time. The creep curves also show that the material is essentially nonlinearly
elastic for small stretch ratios and time effects become increasingly important as the
deformation increases.

4. CYLINDER PROBLEM

The determination of stress distributions in a viscoelastic cylinder has been one of the
most extensively studied topics in the field of viscoelasticity. Solutions for cylinders made
of linear viscoelastic materials have been attempted by many investigators [27-29]. The
problems for nonlinearly viscoelastic materials under small finite deformation has been
analyzed by Huang and Lee [30] and Ting [31, 32]. In their analyses, a stress-strain relation
in multiple-integral form was assumed. Numerical solutions were obtained by considering
the approximations for short-time ranges. The strains induced were less than 5 per cent.
In this paper, we consider a different type of stress-strain relation which is suitable for
characterizing rubber-like materials. It allows much larger deformations. Since the stress­
strain relation contains only single integrals, the numerical calculations are much simpler
than those involved in multiple-integral formulation.

Consider an infinitely long cylindrical tube made of a homogeneous, isotropic, in­
compressible nonlinearly viscoelastic material (Fig. 3). The loading is limited to axially
symmetric pressures on the inner and outer boundaries. Any material particle with radial
coordinate R in the undeformed state moves to the radial coordinate r(R, t) in the deformed
state. We shall consider a plane strain problem where the deformation is described by the
following relations:

(4.1)
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FIG. 1. Uniaxial creep curves under constant loading.
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VISCOELASTIC
MATERIAL

FIG. 3. Geometry of a viscoelastic cylinder.

The condition of incompressibility requires that

n[r2
- d(t)] = n[R2

- RiJ (4.2)

where rl(t) and R I are, respectively, the inner radii of the deformed state and undeformed
state. Denoting

f3(r) = d(r)-Ri, 13 = f3(t)

then,

r 2(r) = R2 + f3(r), r = r(t)

or

f2(r) = 1+~:), f = f(t).

(4.3)

(4.4)

(4.5)

Without losing generality, we choose a typical material point with particular coordinate

Xl = Rand X 2 = O. (4.6)

For this particular material particle, the deformation gradient F is given in matrix form by

; :1
o J

(4.7)
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In view of the incompressibility condition, we get

Therefore,

1007

(4.8)

(4.9)

The relative deformation gradient Ft(r) has the form

f
0 0

f(r)

Ft(r) = F(r)F- 1 =
0

f(r)
0

(4.10)
f

0 0 1

The corresponding left and right Cauchy-Green tensors are

B~C- It :;]
and

(4.11)

The strain invariants are

f2
0 0

p(r)

Ct(r) =
0

p(r)
0p-

O 0 0

2 1
11 =12 =f +p+l.

(4.12)

(4.13)

The nonvanishing physical stress components are: the radial stress (1~, the circumferential
stress (10 and the axial stress (1•. They have the form

(1r,O,z = -p(t)+[a+b(I1- 3)+cl1]Br,o,z-cB;:0,.

+2{_ 4>o(t-r)[Clr)]~,odr+2Br.0{_ 4>1(t-r)[Ct(r)]~.odr

+2B;,0 f:- 4>2(t-r)[Ct(r)]r,odr+Br,9,z{_ ¢3(t-r)i1(r)dr (4.14)
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(4.15)

where the material is assumed to be undisturbed prior to t O. Specifically in terms of
the unknown function f, the stress components (1, and (18 have the form

(1, = -p(t)+ [a+b( F +)2-2)+c(F +)2+ 1) ])2-C)4

+2 S~- [f
2
q,0(t-'C)+q,1(t 'C) + )2q,2(t-'C)]:'C[f;('C)] d'C

1ft 0 [ 1]+ f2 0- q,3(t-T) o'C f2(t) +F('C) +1 dT

(18 = -p(t) + [a+b( F+)2 -2) +c( f2+ ;2 +1)]F-Cf4

+25:- [)2 q,O(t-T)+q,t(t-T)+Fq,2(t-'C)J~ [f2('C)] dT

+F5:- q,3(t-'C):'C[F(T)+ f;('C) +1] dT (4.16)

where the specific form of f is given in equation (4.5). The equations of equilibrium have
the form

op = op = 0
00 oz .

Equation (4.18) implies

p = p(r, t)

and hence, in terms of the undeformed coordinates

p = jj(R, t).

(4.17)

(4.18)

(4.19)

It is convenient to use the undeformed coordinates for the present analysis. In view of the
relations

equation (4.17) becomes

r fR,
or of 1
-=--R+f=­oR oR f

(4.20)

Since

(4.21)
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(4.22)

where lX{t) is an arbitrary function of time t. To obtain the expression of (fr - (fe, we use
the relations (4.15) and (4.16) which give

[ (
f3 f3) ] [R

2
R

2

+ f3]
(fr-(fe = a+b R2- R2+p +C R2+f3-~

f
t 0 [R

2
+f3 R

2
+f3(7:)]

+2 0- tPo{t-7:)07: R2+f3{7:) R2+f3 d7:

f
t 0 [R

2
R

2 + f3(7;)]
+2 0- tP1(t-7:)07; R2+f3(7:) R2 d7:

f
t 0 [ R4 (R2+f3){R2+f3(7;»]

+2 0- tP2{t-7;)iJr (R2+f3){R2+f3{7:» R4 d7:

(
R2 R

2
+f3)f

t
0 [R

2
+f3(7;) R

2
]

+ R2+f3-~ 0_tP3(t-7:)07; R2 +Ji2+f3(7;)+1 d7:. (4.23)

By substituting equation (4.23) into (4.22), we find that equation (4.22) can be directly
integrated with respect to the space variable R. The resulting relation for (fr has the form

1 [f3 R
2

+f3] b[ R
2

f32 R
4

]
(f. = lX(t)-2(a+c) R2+f3+log~ 2 log R2+f3+ R2{R2+f3) 2(R2+f3)2

-fo
t

[ 1 ] 0 [ R
2
+ f3(7:) f3{7:)- f3]tPo(t-7;)-2 tP3(t-7:) 07: log R2+f3 + R2+f3 d7:

-fa: A.( )o{ f3{7;) 1 R
2

+f3{7:) f3{7:) I R
2
+f3}d

'f'1 t-7: 07: f3(7:)-f3 og R2+f3 +71 og~ 7;

-fo
t

[ 1 ] a {f3
2

2f3f3(7;) 2tP2(t-7:)+2 tP3(t-7:) 07: [f3(7:)-f3f log(R +f3)

f33{7:) + f32{7:)f3 +2f33 -4f32f3(7:) 1

+ [f3(7:)-f3F R2+f3

f32(7:) 2 2 f3(7:)}
+[f3(~)_f3flog[R +f3(r)]-logR +/i2 dr. (4.24)

The circumferential stress (fe can then be determined by equation (4.23). The hydrostatic
pressure function p(t) is found from equation (4.15) which gives the form

(4.25)
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The axial stress (Jz can then be calculated by the relation

(4.26)

The deformations of cylinder can be measured conveniently by using the Lagrangian
strain which has the form

E 1{C-I). (4.27)

The nonvanishing components for the present problem are: axial strain Er and circum­
ferential strain E8 . To express them explicitly in terms of f3(t), we have

(4.28)

(4.29)

Therefore, the stress and strain components are expressed in terms of two unknown
functions a(t) and f3(t). They should be determined from the given boundary conditions.

The boundary conditions for the problem of a cylinder subjected to an axially sym­
metrical internal pressure n(t) are

(Jr[R1,t] = -n(t)

oJR2 ,t] = O.

(4.30)

(4.31)

From equation (4.31), a(t) can be found in terms of f3(t). Then using equation (4.30), an
integral equation for solving f3(t) is found which has the form

1 [ R1J-n(t) =2(a+c) f3~(t)+1J(t)+2IogR
2

Ri R1}
2(R~+f3f +2(Ri +13)2
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(4.32)

(4.33)

1 1
~(t) = R~ + f3 - Ri +P

R~+f3
'1(t) = log -Z--f3'

R t +
After the function P(t) is found, a(t) and (1r are determined by equations (4.24) and (4.31),
respectively, and (10 is evaluated from equation (4.23).

In the numerical calculation, the material functions and equilibrium coefficients are
assumed the same as those assigned in the uniaxial creep problem. The ratio of the inner
and outer radii is chosen to be 0·6. The symmetrical internal pressure is taken to be an
instantaneously applied pressure at zero time, or

n(t) _ H( )
<Po(O) - no t

where H(t) is a Heaviside unit step function. The values of no varies from 0 ,.... 3·0. The
unknown function P(t) at zero time is determined by a trial-and-error procedure by using
the linear solution as the initial trial value. Each successive time step is then determined
by a similar iterative method with the value of the previous step as the initial trial value.
Integrations are evaluated numerically by a trapezoidal formula. A program in Fortran
language was made for the computer CDC 6500. Different time intervals were chosen in
the computation. Finally, we found that the time interval t1.(t/to) = 0·05 was suitable for
calculation where to is chosen to be 100 sec. Figure 4 shows the radial and circumferential
strains at various loading values. The radial strain Er is approximately following a straight
line variation which indicates a nearly linear behavior. However, the circumferential
strain Eo is concave toward the strain axis and the nonlinearity becomes increasingly
important as the loading increases. For strains less than 5 per cent, the sum Er +Eo is
close to zero which shows that this particular material can be approximated by a linear
theory if the strain level is lower than 5 per cent. The strain distributions in cylinder are
shown in Figs. 5 and 6 where Er and Eo are plotted against the dimensionless space variable
R/Rz for different times. It shbws that the maximum strain occurs at the inner boundary
and the value increases with time. Figures 7 and 8 show the stress distributions in cylinder
for various times. Fora linearanalysis, since the stress components (1rand (J0 are independent
of material behavior, they are invariant with respect to time [28]. Therefore, the time
variation shown in Figs. 7 and 8 are due to the effect of nonlinearity. As expected from the
result of-nearly linear variation of Er shown in Fig. 4, the radial stress does not change
appreciably with time. However, the circumferential stress component shows a significant
time effect of 15 per cent at no = 2·0. Figures 9 and 10 show the values of stresses at various
internal pressures. Again, (1r is essentially linear. (10 is concave toward the stress axis and
the nonlinearity grows sharply with time.

5. CONCLUSIONS

Anonlinear creep problem and a cylinder problem are studied based on the approximate
constitutive equation of finite linear viscoelasticity. We have demonstrated that this
equation is convenient for stress analysis.



o
tv

FIG. 4. Radial and circumferential strains ys. loadings.

R1
R =0.6

2

JTo=20 I m

",:::>
~

"(]
....,

0.21- '" "'~~ -l Z
~

C1
P>

to ::>
0-

1.0 CJ
(.0.8 ~
~0.6 ~

C1

~OA '"0.2 t'
011- ~ ~ 0.0 >z

<;;

___ 1.0
\

"---0.0

01 I ! 1 R-
0.6 0.7 0.8 0.9 1.0 R 2

FIG. 5. Circumferential strain distribution in cylinder.

OA

Es

JTo

to
.!..

-1.0
·0.8
-0.6
-0.4
-0.2

.-0.0

t
tv

1.0
~o.8
0.6
,0.4
0.2
0.0

2.52.01.51.0

ES<RJ,t)

R,
R =0.6

2

0.5

O,r , I I

o

0.2

0.4

0.6

Es ,- Er
r--



0' ! ! ! I R
0.6 0.7 0.8 0.9 1.o R2

:-----....::t.-1.0
~-..;;'J·0.4

0.0

Er

"
-0.2~

:;=0.6

IT.= 2.0

-O.15f ~ I
t
to

1.0
0.4

-0.1 k""'-""'- "1 0.0

IT. =1.0

-0.05

FIG. 6. Radial strain distribution in cylinder.



1014

2.5

2.0

1.5

EDWARD C. TING and GEORGE LIANIS

R
~=06R .

2

JTo =2.0

...... 0.2
--":::::~==l\:0.4

,\0.6
,,0.8

0.0
-1.0

0.6 0.7 0.8 0.9

FIG. 8. Circumferential stress in cylinder.

7.0

6.0

5.0

4.0

3.0

2.0

1.0

R1 =06R .
2

. 0.2
'---- 0.8

0.0
1.0

00.'-'''''--:-1...---
1
.'-0----'1.'-5--2--'.0---2--'5---

3
-'.0

JTo

FIG. 9. Circumferential stress vs. loadings.



Stress analysis for a nonlinear viscoelastic rubberlike material 1015

-2.0

-1.0

3D

]To

2.51.0O.rs
O~----'----"--------'-----'--_......J. ""
o

FIG. 10. Radial stress vs. loadings.

It is interesting to note that, in the solution of cylinder problem, the value of (Jo(R I , t)
in the nonlinear analysis is much higher than the corresponding value in the linear analysis.
Hence, for this particular material, an engineering design based on the linear theory could
be on the dangerous side. This is in contrast with the previous analyses made by Huang
and Lee [30] and Ting [31, 32]. In their numerical calculations based upon the experimental
data for uniaxial creep tests on polypropylene, the nonlinear value is lower than the linear
solution. The results are different because their constitutive equation is for small finite
deformations and the nonlinear effect is contributed primarily by the material nonlinearity.
The present investigation is studied for much larger strains, where the geometrical non­
linearity is the dominant factor.
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A6cTpaKT-HccJIe,LJ,yJOTCJI HemmeAHaJi nOJI3y'feCTl> Ii. 3a~a'la l.\HJl"H~pa> OCHOBaHHhle lia npl16JIHIKeHHbIx

KOHCTHTyTHBHblX ypaBHeHHBX, npe~JlO)l(eHHhIX J1HaHHCOM. nOKa3aHO, 'ITO 3TH ypaBHelUUI nO~XO~l'lw.He

~JHl xapaKTepMCTHKH MaTepMaJIOB noxmKHX pe:utHe, npH KOHe'lHbIX Jle~OpMal.\Hl'lX. I1cnOJIh3YH MeTOjJ,

KOHe'iHblX pa1HOCTeit, nonyqalOTCJI 'iUCneHHbJe pemeHlUI. OfipeJleJieHHblX c nOMow.bJO ')I(CnepHMef-lTllJIbHblX

,llaHHbIX )lJl'! pe3HHbI cntpoJla 6YTa,ll.HeHa. 06CY)K,Q,aIOTCH 'lqxpeKTbl HeJJtll-leKHOCTH CBOltCTB MaTepHaJIa.


